skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hei, Xiali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The discovery of novel thermoset shape memory polymers (TSMPs) for additive manufacturing can be accelerated through the use of a deep‐generative algorithm, minimizing the need for laborious traditional laboratory experiments. This study is the first to introduce an innovative approach that uses a deep generative learning model, namely the conditional variational autoencoder (CVAE), to discover novel TSMPs with lower glass transition temperature () and high recovery stress values (). In this study, specific chemical groups, such as epoxy, amine, thiol, and vinyl, are integrated as constraints to generate novel TSMPs while preserving the essential reaction properties. To address the challenges posed by a small dataset, the CVAE model is used with graph‐extracted features. Unlike previous studies focused on single‐polymer systems, this research extends to two‐monomer samples, discovering 22 novel TSMPs. This approach has practical implications in additive manufacturing, biomedical devices, aerospace, and robotics for the discovery of novel samples from limited data. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026
  2. Differentially Private Stochastic Gradient Descent (DP-SGD) has become a widely used technique for safeguarding sensitive information in deep learning applications. Unfortunately, DP-SGD’s per-sample gradient clipping and uniform noise addition during training can significantly degrade model utility and fairness. We observe that the latest DP-SGD-Global-Adapt’s average gradient norm is the same throughout the training. Even when it is integrated with the existing linear decay noise multiplier, it has little or no advantage. Moreover, we notice that its upper clipping threshold increases exponentially towards the end of training, potentially impacting the model’s convergence. Other algorithms, DP-PSAC, Auto-S, DP-SGD-Global, and DP-F, have utility and fairness that are similar to or worse than DP-SGD, as demonstrated in experiments. To overcome these problems and improve utility and fairness, we developed the DP-SGD-Global-Adapt-V2-S. It has a step-decay noise multiplier and an upper clipping threshold that is also decayed step-wise. DP-SGD-Global-Adapt-V2-S with a privacy budget of 1 improves accuracy by 0.9795%, 0.6786%, and 4.0130% in MNIST, CIFAR10, and CIFAR100, respectively. It also reduces the privacy cost gap by 89.8332% and 60.5541% in unbalanced MNIST and Thinwall datasets, respectively. Finally, we develop mathematical expressions to compute the privacy budget using truncated concentrated differential privacy (tCDP) for DP-SGD-Global-Adapt-V2-T and DP-SGD-Global-Adapt-V2-S. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Recent advancements in person recognition have raised concerns about identity privacy leaks. Gait recognition through millimeter-wave radar provides a privacy-centric method. However, it is challenged by lower accuracy due to the sparse data these sensors capture. We are the first to investigate a cross-modal method, IdentityKD, to enhance gait-based person recognition with the assistance of facial data. IdentityKD involves a training process using both gait and facial data, while the inference stage is conducted exclusively with gait data. To effectively transfer facial knowledge to the gait model, we create a composite feature representation using contrastive learning. This method integrates facial and gait features into a unified embedding that captures the unique identityspecific information from both modalities. We employ two distinct contrastive learning losses. One minimizes the distance between embeddings of data pairs from the same person, enhancing intraclass compactness, while the other maximizes the distance between embeddings of data pairs from different individuals, improving inter-class separability. Additionally, we use an identity-wise distillation strategy, which tailors the training process for each individual, ensuring that the model learns to distinguish between different identities more effectively. Our experiments on a dataset of 36 subjects, each providing over 5000 face-gait pairs, demonstrate that IdentityKD improves identity recognition accuracy by 6.5% compared to baseline methods. 
    more » « less
    Free, publicly-accessible full text available December 3, 2025
  4. Micro-CT, also known as X-ray micro-computed tomography, has emerged as the primary instrument for pore-scale properties study in geological materials. Several studies have used deep learning to achieve super-resolution reconstruction in order to balance the trade-off between resolution of CT images and field of view. Nevertheless, most existing methods only work with single-scale CT scans, ignoring the possibility of using multi-scale image features for image reconstruction. In this study, we proposed a super-resolution approach via multi-scale fusion using residual U-Net for rock micro-CT image reconstruction (MS-ResUnet). The residual U-Net provides an encoder-decoder structure. In each encoder layer, several residual sequential blocks and improved residual blocks are used. The decoder is composed of convolutional ReLU residual blocks and residual chained pooling blocks. During the encoding-decoding method, information transfers between neighboring multi-resolution images are fused, resulting in richer rock characteristic information. Qualitative and quantitative comparisons of sandstone, carbonate, and coal CT images demonstrate that our proposed algorithm surpasses existing approaches. Our model accurately reconstructed the intricate details of pores in carbonate and sandstone, as well as clearly visible coal cracks. 
    more » « less
  5. Abstract The most common eye infection in people with diabetes is diabetic retinopathy (DR). It might cause blurred vision or even total blindness. Therefore, it is essential to promote early detection to prevent or alleviate the impact of DR. However, due to the possibility that symptoms may not be noticeable in the early stages of DR, it is difficult for doctors to identify them. Therefore, numerous predictive models based on machine learning (ML) and deep learning (DL) have been developed to determine all stages of DR. However, existing DR classification models cannot classify every DR stage or use a computationally heavy approach. Common metrics such as accuracy, F1 score, precision, recall, and AUC-ROC score are not reliable for assessing DR grading. This is because they do not account for two key factors: the severity of the discrepancy between the assigned and predicted grades and the ordered nature of the DR grading scale.  This research proposes computationally efficient ensemble methods for the classification of DR. These methods leverage pre-trained model weights, reducing training time and resource requirements. In addition, data augmentation techniques are used to address data limitations, improve features, and improve generalization. This combination offers a promising approach for accurate and robust DR grading. In particular, we take advantage of transfer learning using models trained on DR data and employ CLAHE for image enhancement and Gaussian blur for noise reduction. We propose a three-layer classifier that incorporates dropout and ReLU activation. This design aims to minimize overfitting while effectively extracting features and assigning DR grades. We prioritize the Quadratic Weighted Kappa (QWK) metric due to its sensitivity to label discrepancies, which is crucial for an accurate diagnosis of DR. This combined approach achieves state-of-the-art QWK scores (0.901, 0.967 and 0.944) in the Eyepacs, Aptos, and Messidor datasets. 
    more » « less
  6. As a new format of mobile application, mini-programs, which function within a larger app and are built with HTML, CSS, and JavaScript web technology, have become the way to do almost everything in China. Many researchers have done the ecosystem or developing study, while the permission problem has not been investigated yet. In this paper, we present our studies on the permission management of mini-programs and conduct a systematic study on 9 popular mobile host app ecosystems that host over 7 million mini-programs. After testing over 2,580 APIs, we extracted a common abstract model for mini-programs’ permission control and revealed six categories of potential security vulnerabilities due to improper permission management. It is alarming that the current popular mobile app ecosystems (i.e., host apps) under study have at least one security vulnerability due to the mini-programs’ improper permission management. We present the corresponding attack methods to dissect these potential weaknesses further to exploit the discovered vulnerabilities. To prove that the revealed vulnerabilities may cause severe consequences in real-world use, we show three kinds of attacks without privileges or cracking the host apps. We have responsibly disclosed the newly discovered vulnerabilities, and two CVEs were issued. Finally, we put forward systematic suggestions to strengthen the standardization of mini-programs. 
    more » « less
  7. Obradovic, Zoran (Ed.)
    An efficient fake news detector becomes essential as the accessibility of social media platforms increases rapidly. Previous studies mainly focused on designing the models solely based on individual data sets and might suffer from degradable performance. Therefore, developing a robust model for a combined data set with diverse knowledge becomes crucial. However, designing the model with a combined data set requires extensive training time and sequential workload to obtain optimal performance without having some prior knowledge about the model's parameters. The presented study here will help solve these issues by introducing the unified training strategy to have a base structure for the classifier and all hyperparameters from individual models using a pretrained transformer model. The performance of the proposed model is noted using three publicly available data sets, namely ISOT and others from the Kaggle website. The results indicate that the proposed unified training strategy surpassed the existing models, such as Random Forests, convolutional neural networks, and long short-term memory, with 97% accuracy and achieved the F1 score of 0.97. Furthermore, there was a significant reduction in training time by almost 1.5 to 1.8 × by removing words lower than three letters from the input samples. We also did extensive performance analysis by varying the number of encoder blocks to build compact models and trained on the combined data set. We justify that reducing encoder blocks resulted in lower performance from the obtained results. 
    more » « less